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Abstract

In this paper, we propose a new approach for inter-
polating curves (contour morphing) in time, which is a
process of gradually changing a source curve (known)
through intermediate curves (unknown) into a target
curve (known). The novelty of our approach is in the
deployment of a new regularization term and the cor-
responding Euler equation. Our method is applica-
ble to implicit curve representation and it establishes
a relationship between curve interpolation and a two
dimensional function. This is achieved by minimizing
the supremum of the gradient, which leads to the In�-
nite Laplacian Equation (ILE). ILE is optimal in the
sense that interpolated curves are equally distributed
along their normal direction. We point out that the
existing Distance Field Manipulation (DFM) methods
are only an approximation to the proposed optimal
solution and that the relationship between ILE and
DFM is not local as it has been asserted before. The
proposed interpolation can also be used to construct
multiscale curve representation.

1 Introduction
Let C be a deformable closed planar curve such

that C(t); t 2 [0; 1] denotes a family of the evolved
curves with known initial condition at C(0) = C0 and
C(1) = C1. Our aim is to reconstruct a representation
C(t) for 0 < t < 1 so that the sequence of intermediate
shapes is smooth and continuous in time.

Curve interpolation has many applications in com-
puter vision and graphics including a metric for com-
paring curves, animation, and higher resolution visu-
alization from serial sections. This is di�erent from
interpolating function values at di�erent grid points
because we are reconstructing new contours from two
known ones. It is also slightly di�erent from the curve
evolution problem because we have a �xed ending
curve as well as starting curve.

Current solutions to curve interpolation are based
on the Distance Field Manipulation (DFM) [18]. In
DFM, the distance transformations of C0 and C1

�This work is supportedby the Director, O�ce of Energy Sci-
ence Research, O�ce of Computationand TechnologyResearch,
Mathematical, Information, and Computational Sciences Divi-
sion of the U. S. Department of Energy under Contract No.
DE-AC03-76SF00098 with the University of California. The
LBNL publication number is LBNL-45325. E-mail: gcong,
parvin@portnoy.lbl.gov

are �rst represented as regular two dimensional func-
tions. Then intermediate implicit functions are cre-
ated by linear interpolation between the distance
transformations. Finally, the curves are extracted
as the zero-crossing of these intermediate functions
[14, 15, 16, 18, 20, 21]. Although DFM has been
widely used, it has not been su�ciently questioned.
For example, 1) Why does the distance transforma-
tion work? 2) Are there alternative methods? 3) If
there is an alternative method then is the distance
transformation the optimal �eld function? This paper
partially focuses on these questions by exploring an
entirely new approach.

A unique feature of our method is in the new
regularization term and the corresponding Euler-
Lagrange equation. Since interpolation is highly
under-constrained, a good guess about the transfor-
mation process is equivalent to �nding a function
f(x; y) de�ned in a certain region R such that f(C0) =
0; f(C1) = 1 and C(t) is the level curve de�ned by
f(x; y) = t. This function can then be approxi-
mated by a regularization approach that is well known
in computer vision. Examples include shape from
shading [19], surface reconstruction [4], reconstruction
from projections [6], etc. Current regularization tech-
niques require that the surface be globally smooth,
and the most popular form is to minimize

R
R
g(f).

Let 5 be the gradient operator and 4 the Laplacian
operator, g could be g = j5f j, g = j5f j2, g = j4f j,
or other variations. These techniques have no control
on local properties of f since minimization is applied
to the integral, and f might change sharply. Here,
we propose a new regularization term based on min-
imizing the supremum of j 5 f j. We prove that the
Euler equation of this functional is the In�nite Lapla-
cian Equation (ILE). We also show that the solution
of ILE is optimal for the interpolation problem since
C(t) will be equally distributed along the gradient tra-
jectory. We also show that (1) while DFM is e�cient
and simple, it is only an approximate solution to ILE;
(2) the solution based on DFM is a global result, and
it is not a widely accepted local operation [21]; and (3)
the interpolation technique can be used for multiscale
curve representation.

Section 2 provides a summary of contour repre-
sentation and proposed new regularization. Section
3 outlines the corresponding numerical solution and
compares the behavior of the energy function to the



standard gradient based regularization. Section 4 pro-
vides experimental results and its application to mul-
tiscale contour representation. Section 5 concludes the
paper.

2 Interpolation with In�nite Laplacian
Equation

Let Oi be the inside-outside function of curve Ci,
i = 0; 1,

Oi(x; y) =

(
�1; if (x; y) is inside Ci

1; if (x; y) is outside Ci

0; if (x; y) is on Ci

(1)

We then de�ne the \Interpolation Region" R as

R(C0; C1) = f(x; y)jO0(x; y)O1(x; y) � 0g (2)

Examples of R are shown in Figure 1.
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Figure 1: R(C0; C1): (a) Doubly connected region,
(b) Multiply connected region, (c) Intersection, and
(d) Isolated objects.

We restrict the interpolation to R, i.e., C(t) � R.
As t changes from 0 to 1, C(t) changes from C0 to C1

continuously and smoothly, and sweeps every point in
R. Suppose f(x; y) be the time at which the curve
crosses a given point (x; y). Then function f satis�es

C(t) = f(x; y)jf(x; y) = tg (3)

Equation (3) gives a implicit representation of the in-
terpolated curves. Suppose that u is the parameter
of the curve. Di�erentiating both sides of f(x; y) = t
with respect to u, we have

5 f �
@C

@u
= 0 (4)

Where @C
@u

is in the tangent direction, and 5f is in
the normal direction of the curve respectively. Now,
consider the evolution of the curve, where any defor-
mation [7, 11, 12, 13] can be written as:

@C

@t
= �N + �T (5)

where N is the normal vector and T the tangent
vector. � and � are arbitrary functions. It is well
known that the tangent component has no e�ect on
the shape of the deformed curve, but only changes

the parameterization[11, 12, 13]. We can then set
� = 0. Thus, the curve moves along the normal direc-
tion with the speed �(u; t). In this context, di�erenti-
ating f(x; y) = t with respect to t yields

5 f �
@C

@t
= 1 (6)

Since 5f and N are in the same direction,

j 5 f j� = 1 (7)

We have,

� =
1

j 5 f j
(8)

Thus, the gradient of f contains both the direction
and speed information of the curve movement.
2.1 A new regularization term

To interpolate the curves implicitly, we need to
solve the following problem

Find f(x; y); (x; y) 2 R, such that
f(C0) = 0; f(C1) = 1.

Once f is found, C(t) can be obtained by Equation
(3). This problem is still under-constrained. However,
since we changed the problem from curve interpolation
to functional interpolation, well known mathematical
tools, such as regularization, can be leveraged. Most
of the existing regularization techniques attempt to
minimize an integral such as

R
R
j 5 f j2. Yet, this for-

mulation has no control on the local property of f .
In other words, the global average of j 5 f j may be
small, but locally f may change sharply. A better
way to overcome this issue is to minimize j 5 f j at
every point. Thus, we formulate the problem as the
minimization of the supremum of j 5 f j. It is natu-
ral to consider the functional H(f) = supRj 5 f j as a
\limit" of the sequence of functionals

HN (f) = (

Z
R

j 5 f j2Ndx)
1

2N ; N = 1; 2; 3; ::: (9)

The Euler equation for the minimization of the func-
tional HN (f) can be expressed as:

j 5 f j2(N�2)f
1

2(N � 1)
j 5 f j24 f

+f2xfxx + 2fxfyfxy + f2y fyyg = 0 (10)

where a subscript indicates a derivative, such as fx =
@f

@x
; fxy =

@2f

@x@y
. By removing the �rst coe�cient and

letting N !1, we have

f2xfxx + 2fxfyfxy + f2y fyy = 0 (11)

Equation (11) is called the In�nite Laplacian Equa-
tion(ILE), which has been studied widely in the liter-
ature [1, 2, 3, 10]. Some important properties of the



equation [2] are: (1) There is at most one solution
(that may not be a smoot curve) and if we rede�ne
the \solution" in a suitable weak sense, then a solu-
tion continuous at least to C1 does exist; (2) The tra-
jectory of the gradient of f is either a convex curve or
a straight line; and (3) There are no stationary points
j 5 f j = 0 in R.

Introducing the notation J (f) = f2xfxx +
2fxfyfxy + f2y fyy, our problem now becomes

Find f(x; y); (x; y) 2 R, such that
f(C0) = 0; f(C1) = 1; and J (f) = 0

2.2 Equal Importance Criteria
This section outlines the rationale for optimality of

the supremum as the norm for regularization. Our
argument is based on the Equal Importance Crite-
rion [8, 9]. This criterion asserts that every point
in R is equally important and contributes similarly
to the reconstruction process. Any other assumption
means that we need to know some additional informa-
tion about the curve. It is easy to verify that ILE is
equivalent to the following equation

J 0(f) = 5(j 5 f j) �
5f

j 5 f j
= 0 (12)

which implies that along each trajectory of the gradi-
ent of f , the magnitude of the gradient is a constant.
The interpolated curves C(u; t) are then equally dis-
tributed along their normal direction, or simply each
point advances at its own constant speed, as shown
in Figure 2. When no information about the defor-
mation process is available, it is best to assume that
the curves C(u; t) are equally distributed since if two
curves are closer to each other than to other curves,
there must be some additional reason for such varia-
tion that should be known. This is in con
ict with the
problem de�nition. Thus, in view of time or distance
between curves, which is our only clue about the curve,
all points are equally important. Comparative analy-

(a)

Figure 2: Curves are equally distributed along the
gradient trajectory. The most outer and inner curves
are labeled as known source and target curves. Other
curves are interpolated ones.

sis of our approach indicates that our method gener-
ates a more smooth family of curves. This is shown in

Figure 3, which indicates that minimizing the integral
of j 5 f j aims to minimize the area while minimizing
the supremum aims to minimize the maximum. Al-
though the overall integral of j5f j may be larger, the
supremum is smaller in our approach and the gradient
is more likely to concentrate at a smaller range. Thus,
speed of the moving curve is in a smaller range and
the whole curve changes more smoothly with time.

(a) (b)

Figure 3: Comparison of our method with traditional
regularization terms. (a) Solution to minimization of
gradient; (b) Solution to minimization of supremum.

3 Numerical Solution of ILE
Many numerical methods can be used to solve

Equation (11), and at least a weak solution is guaran-
teed. In this section, we �rst give an iterative method.
Then we show that a simple approximate solution can
be constructed by DFM.
3.1 The iterative approach

The solution of ILE can be obtained iteratively by:

fv+1 = fv � �J (fv) (13)

where � is the step size and v indicates the iteration
number. Although the approach converges only to a
local minimum, the solution is acceptable if we start
from a good initialization. The derivatives can be cal-
culated by �nite di�erence:

fx(i; j) = f(i; j) � f(i � 1; j)

fy(i; j) = f(i; j) � f(i; j � 1)

fxx(i; j) = f(i � 1; j) + f(i + 1; j)� 2f(i; j)

fyy(i; j) = f(i; j � 1) + f(i; j + 1)� 2f(i; j)

fxy(i; j) = f(i � 1; j � 1) + f(i; j)

�f(i � 1; j)� f(i; j � 1)

(14)

The Algorithm can be written as:
Algorithm 1 Iterative Solution

1. Initialize f , with the boundary condition f(C0) =
0; f(C1) = 1.

2. Initialize R with the distance transform.



3. Update all the points inside R with equation (13).

4. Compute supj 5 f j.

5. Repeat 2 to 3 until a local minimum of supj 5 f j
is reached.

6. Find the interpolated curves
C(t) = f(x; y)jf(x; y) = tg.

Initialization of R can be calculated by DFM since it
is a good approximation of the solution (This will be
shown in the next section).
3.2 Interpolation with Distance Trans-

form
The iterative solution for optimality can be costly

especially if the topologies of C0 and C1 are compli-
cated. However, leveraging the distance transform can
yield a more e�cient solution.

Let's de�ne Ti as the Signed Distance Transforma-
tion of Ci; i = 0; 1, where Ti(x; y) is the distance from
(x; y) to the nearest point on Ci, and the distance is set
to a negative number if (x; y) is inside Ci and positive
otherwise. For each point p (shown in Figure 4), there
should be a gradient trajectory 
 passing through it
such that it intersects C0 and C1 at p0 and p1, re-
spectively. Since the normal of these two curves and
the gradient of f are in the same direction, 
 ? C0 at
p0 and 
 ? C1 at p1. We can approximate the curve

, passing through p, by drawing two line segments
pp00 ? C0; pp

0

1 ? C1, to create p00pp
0

1. Let l denote the
length of 
 from p0 to p1. Hence, l � jp

0

0pj+jp
0

1pj. The
preceding formulation indicates that jp00pj = �T0(p),
jp01pj = T1(p). Since f is changing linearly from 0 to 1
along 
, f(p) can be approximated by:

f(p) =
jp00pj

jp00pj+ jp
0

1pj
=

�T0(p)

T1(p)� T0(p)
(15)
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Figure 4: Computing f(x; y) from distance transfor-
mation

Equation (15) has a drawback that, when C0 and
C1 intersect each other at p, we get T1(p)� T0(p) = 0
and a zero divisor. Thus, we seek an isocurve repre-
sentation without this defect. The two dimensional

isocurve representation, �(x; y; t); 0 � t � 1, can be
expressed as:

�(x; y; t) = tT1(x; y) + (1� t)T0(x; y) (16)

Note that this is exactly the DFM. Isocurve
�(x; y; t) = 0 locates at

t(x; y) =
�T0(x; y)

T1(x; y)� T0(x; y)
(17)

which is exactly the curve that we reconstructed in
(15). Thus, DFM is an approximation of the ILE so-
lution in the sense described above.

Equation (16) is preferred over equation (15) be-
cause it works for any C0 and C1 even if C0 = C1.
Thus, the method treats any curve and topological
changes naturally and cannot fail. Let 0 � t � 1
in equation (17) then T1(x; y)T0(x; y) � 0. We know
that T1(x; y)T0(x; y) � 0 in and only in R. Thus, the
isocurve �(x; y; t) = 0 is guaranteed to be inside the
region R, C(t) � R; 0 � t � 1. The new algorithm is
as follows:
Algorithm 2 Algebraic Solution

1. Calculate the Ti; i = 0; 1.

2. for t = 0 to 1

(a) Calculate the isocurve representation �(t) =
tT1 + (1� t)T0.

(b) C(t) equals the zero-crossing of �(t).

The DFM approach has following advantages:

1. For arbitrary C0; C1, we can get a smooth and
natural interpolation.

2. The interpolation can be carried out at any de-
sired resolution.

3. The isocurve representation is good for geometric
analysis.

4 Applications and Experimental Re-
sults

In this section, we apply the proposed technique to
di�erent curves and show that a new multiscale curve
representation can be constructed. In every experi-
ment, the �rst curve is the source curve and the last
curve is the target curve. Others are interpolated in-
termediate curves.

Figures 5 and 6 show the results computed by the
variational approach where f is initialized by DFM
(Algorithm 2). We then update the implicit function
until a local minimum is reached. Finally, the level
curves at di�erent height are extracted.

Figure 5 shows interpolation of a �sh shape to a
panda. The image size is 162 by 161 where 8 curves
have been inserted. In this experiment, � = 0:05.

Figure 6 shows interpolation of a vase to a cat. The
image size is 163 by 183 and 8 curves have been in-
serted. In this experiment, � = 0:03.
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Figure 5: Interpolating �sh and panda.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6: Interpolating vase and cat.

Figures 7 and 8 show interpolated results by DFM
for complex topological changes. The distance trans-
formation is calculated by the methods proposed by
Borgefors [5]. Figure 7 shows interpolation of charac-
ter \F' to \O". The image size is 120 by 121. Eight
images have been interpolated between times 0 and 1.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7: Interpolating character \F" and \O"

Figure 8 shows interpolation of character \B" to
\L". The image size is 104 by 111. Eight images have
been inserted between times 0 and 1.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 8: Interpolating character \B" and \L"

4.1 Multiscale curve representation
Traditional multiscale curve representation used

Gaussian smoothing [17] or curvature deformation
[8, 11, 12, 13], and it was proved that the curve con-
verges to a circle [11, 12]. Saprio also constructed
the length and area preserving deformation. The pro-
posed curve interpolation can be used for multiscale
curve representation with C1 as the original curve and



C2 as a circle with desired radius. Figures 9 and 10
show the experimental results. Note that the recon-
structed curves are dependent on the relative position
of circle and its radius. In all experiments, the circle is
centered at the mass center of the curve and the radius
is one fourth of the length of the curve outside box.
All curves are computed by the iterative approach of
algorithm 1.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 9: Multiscale representation of pear shape

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 10: Multiscale representation of �sh shape

5 Conclusion
We proposed a PDE based solution to the con-

tour morphing problem. Our method �nds natural
and smooth interpolated curves that are equally dis-
tributed along the normal direction. This is optimal
when no information about the deformation process
exists and the best thing that we can do is to assign
the generated curves fairly. The PDE is derived from a
new regularization term that ensures the local smooth-
ness. A numerical method was developed to construct
and compute an optimal solution. At the same time,
we showed that DFM is an e�cient and simple approx-
imation to the ILE, which can handle any curve with

arbitrary topological changes. The method is applica-
ble to problems in computer vision and graphics.
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